import { DataArrayTexture, LinearFilter, RGBAFormat, ShaderChunk, ShaderMaterial, Texture, Vector4, } from "three"; export interface TileData { xmin: number; ymin: number; xmax: number; ymax: number; zoom: number; texture: Texture; } const maxTiles = 24; // Initialize empty texture slots const dummyTexture = new Texture(); dummyTexture.image = document.createElement("canvas"); dummyTexture.needsUpdate = true; // Create shader material export const shaderMaterial = new ShaderMaterial({ uniforms: { tileBounds: { value: Array(maxTiles).fill(new Vector4(0, 0, 0, 0)) }, tileCount: { value: 0 }, tiles: { value: null }, }, vertexShader: ShaderChunk.common + "\n" + ShaderChunk.logdepthbuf_pars_vertex + ` varying vec3 vWorldPosition; varying float fragDepth; void main() { vWorldPosition = (modelMatrix * vec4(position, 1.0)).xyz; gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0); fragDepth = (gl_Position.z / gl_Position.w + 1.0) * 0.5; ` + ShaderChunk.logdepthbuf_vertex + ` } `, fragmentShader: ShaderChunk.logdepthbuf_pars_fragment + ` uniform vec4 tileBounds[${maxTiles}]; uniform int tileCount; uniform sampler2DArray tiles; varying vec3 vWorldPosition; varying float fragDepth; void main() { vec4 color = vec4(191.0/255.0, 209.0/255.0, 229.0/255.0, 1.0); // Default color for (int i = 0; i < ${maxTiles}; i++) { if (i >= tileCount) break; // Only process available tiles vec4 bounds = tileBounds[i]; if (vWorldPosition.x >= bounds.x && vWorldPosition.x <= bounds.y && vWorldPosition.y >= bounds.z && vWorldPosition.y <= bounds.w) { vec2 uv = (vWorldPosition.xy - bounds.xz) / (bounds.yw - bounds.xz); uv = vec2(uv.x, 1.0 - uv.y); color = texture2D(tiles, vec3(uv, i)); break; // Stop checking once we find the correct tile } } gl_FragColor = color; gl_FragDepth = fragDepth; ` + ShaderChunk.logdepthbuf_fragment + ` } `, }); export function updateTiles(newTiles: TileData[]) { if (newTiles.length > maxTiles) { newTiles = newTiles.slice(0, maxTiles); } const textures = newTiles.map((t) => t.texture); const bounds = newTiles.map( (t) => new Vector4(t.xmin, t.xmax, t.ymin, t.ymax) ); // Fill remaining slots with dummy data to maintain uniform array size while (textures.length < maxTiles) { textures.push(dummyTexture); bounds.push(new Vector4(0, 0, 0, 0)); } // Update shader uniforms shaderMaterial.uniforms.tileBounds.value = bounds; shaderMaterial.uniforms.tileCount.value = newTiles.length; shaderMaterial.uniforms.tiles.value = createDataArrayTexture(textures); } // Create a buffer with color data const width = 256; const height = 256; const size = width * height; function createDataArrayTexture(textures: Texture[]) { const depth = textures.length; const data = new Uint8Array(4 * size * depth); for (let i = 0; i < depth; i++) { const texture = textures[i]; const imageData = getImageData(texture); if (imageData) { data.set(imageData, i * size * 4); } } // Use the buffer to create a DataArrayTexture const texture = new DataArrayTexture(data, width, height, depth); texture.format = RGBAFormat; texture.generateMipmaps = false; texture.magFilter = LinearFilter; texture.minFilter = LinearFilter; texture.needsUpdate = true; return texture; } // Create a canvas and draw the image on it const canvas = new OffscreenCanvas(width, height); const ctx = canvas.getContext("2d"); function getImageData(texture: Texture) { const image = texture.source.data; // Draw the image onto the canvas if (ctx) { ctx.drawImage(image, 0, 0); // Get the pixel data from the canvas const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); return imageData.data; } else { return null; } }