First commit
This commit is contained in:
commit
87d22a4516
235 changed files with 51802 additions and 0 deletions
208
node_modules/proj4/lib/projections/aeqd.js
generated
vendored
Normal file
208
node_modules/proj4/lib/projections/aeqd.js
generated
vendored
Normal file
|
@ -0,0 +1,208 @@
|
|||
import adjust_lon from '../common/adjust_lon';
|
||||
import {HALF_PI, EPSLN} from '../constants/values';
|
||||
|
||||
import mlfn from '../common/mlfn';
|
||||
import e0fn from '../common/e0fn';
|
||||
import e1fn from '../common/e1fn';
|
||||
import e2fn from '../common/e2fn';
|
||||
import e3fn from '../common/e3fn';
|
||||
import gN from '../common/gN';
|
||||
import asinz from '../common/asinz';
|
||||
import imlfn from '../common/imlfn';
|
||||
|
||||
|
||||
|
||||
export function init() {
|
||||
this.sin_p12 = Math.sin(this.lat0);
|
||||
this.cos_p12 = Math.cos(this.lat0);
|
||||
}
|
||||
|
||||
export function forward(p) {
|
||||
var lon = p.x;
|
||||
var lat = p.y;
|
||||
var sinphi = Math.sin(p.y);
|
||||
var cosphi = Math.cos(p.y);
|
||||
var dlon = adjust_lon(lon - this.long0);
|
||||
var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
|
||||
if (this.sphere) {
|
||||
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||||
//North Pole case
|
||||
p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
|
||||
p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
|
||||
return p;
|
||||
}
|
||||
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||||
//South Pole case
|
||||
p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
|
||||
p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
|
||||
return p;
|
||||
}
|
||||
else {
|
||||
//default case
|
||||
cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
|
||||
c = Math.acos(cos_c);
|
||||
kp = c ? c / Math.sin(c) : 1;
|
||||
p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
|
||||
p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
|
||||
return p;
|
||||
}
|
||||
}
|
||||
else {
|
||||
e0 = e0fn(this.es);
|
||||
e1 = e1fn(this.es);
|
||||
e2 = e2fn(this.es);
|
||||
e3 = e3fn(this.es);
|
||||
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||||
//North Pole case
|
||||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||||
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
|
||||
p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
|
||||
p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
|
||||
return p;
|
||||
}
|
||||
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||||
//South Pole case
|
||||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||||
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
|
||||
p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
|
||||
p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
|
||||
return p;
|
||||
}
|
||||
else {
|
||||
//Default case
|
||||
tanphi = sinphi / cosphi;
|
||||
Nl1 = gN(this.a, this.e, this.sin_p12);
|
||||
Nl = gN(this.a, this.e, sinphi);
|
||||
psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
|
||||
Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
|
||||
if (Az === 0) {
|
||||
s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
|
||||
}
|
||||
else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
|
||||
s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
|
||||
}
|
||||
else {
|
||||
s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
|
||||
}
|
||||
G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
|
||||
H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
|
||||
GH = G * H;
|
||||
Hs = H * H;
|
||||
s2 = s * s;
|
||||
s3 = s2 * s;
|
||||
s4 = s3 * s;
|
||||
s5 = s4 * s;
|
||||
c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
|
||||
p.x = this.x0 + c * Math.sin(Az);
|
||||
p.y = this.y0 + c * Math.cos(Az);
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
export function inverse(p) {
|
||||
p.x -= this.x0;
|
||||
p.y -= this.y0;
|
||||
var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F, sinpsi;
|
||||
if (this.sphere) {
|
||||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||||
if (rh > (2 * HALF_PI * this.a)) {
|
||||
return;
|
||||
}
|
||||
z = rh / this.a;
|
||||
|
||||
sinz = Math.sin(z);
|
||||
cosz = Math.cos(z);
|
||||
|
||||
lon = this.long0;
|
||||
if (Math.abs(rh) <= EPSLN) {
|
||||
lat = this.lat0;
|
||||
}
|
||||
else {
|
||||
lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
|
||||
con = Math.abs(this.lat0) - HALF_PI;
|
||||
if (Math.abs(con) <= EPSLN) {
|
||||
if (this.lat0 >= 0) {
|
||||
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
|
||||
}
|
||||
else {
|
||||
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
|
||||
}
|
||||
}
|
||||
else {
|
||||
/*con = cosz - this.sin_p12 * Math.sin(lat);
|
||||
if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
|
||||
//no-op, just keep the lon value as is
|
||||
} else {
|
||||
var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
|
||||
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
|
||||
}*/
|
||||
lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
|
||||
}
|
||||
}
|
||||
|
||||
p.x = lon;
|
||||
p.y = lat;
|
||||
return p;
|
||||
}
|
||||
else {
|
||||
e0 = e0fn(this.es);
|
||||
e1 = e1fn(this.es);
|
||||
e2 = e2fn(this.es);
|
||||
e3 = e3fn(this.es);
|
||||
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||||
//North pole case
|
||||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||||
M = Mlp - rh;
|
||||
lat = imlfn(M / this.a, e0, e1, e2, e3);
|
||||
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
|
||||
p.x = lon;
|
||||
p.y = lat;
|
||||
return p;
|
||||
}
|
||||
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||||
//South pole case
|
||||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||||
M = rh - Mlp;
|
||||
|
||||
lat = imlfn(M / this.a, e0, e1, e2, e3);
|
||||
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
|
||||
p.x = lon;
|
||||
p.y = lat;
|
||||
return p;
|
||||
}
|
||||
else {
|
||||
//default case
|
||||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||||
Az = Math.atan2(p.x, p.y);
|
||||
N1 = gN(this.a, this.e, this.sin_p12);
|
||||
cosAz = Math.cos(Az);
|
||||
tmp = this.e * this.cos_p12 * cosAz;
|
||||
A = -tmp * tmp / (1 - this.es);
|
||||
B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
|
||||
D = rh / N1;
|
||||
Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
|
||||
F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
|
||||
psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
|
||||
lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
|
||||
sinpsi = Math.sin(psi);
|
||||
lat = Math.atan2((sinpsi - this.es * F * this.sin_p12) * Math.tan(psi), sinpsi * (1 - this.es));
|
||||
p.x = lon;
|
||||
p.y = lat;
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
export var names = ["Azimuthal_Equidistant", "aeqd"];
|
||||
export default {
|
||||
init: init,
|
||||
forward: forward,
|
||||
inverse: inverse,
|
||||
names: names
|
||||
};
|
Loading…
Add table
editor.link_modal.header
Reference in a new issue