First commit
This commit is contained in:
commit
87d22a4516
235 changed files with 51802 additions and 0 deletions
104
node_modules/proj4/lib/projections/gnom.js
generated
vendored
Normal file
104
node_modules/proj4/lib/projections/gnom.js
generated
vendored
Normal file
|
@ -0,0 +1,104 @@
|
|||
import adjust_lon from '../common/adjust_lon';
|
||||
import asinz from '../common/asinz';
|
||||
import {EPSLN} from '../constants/values';
|
||||
|
||||
/*
|
||||
reference:
|
||||
Wolfram Mathworld "Gnomonic Projection"
|
||||
http://mathworld.wolfram.com/GnomonicProjection.html
|
||||
Accessed: 12th November 2009
|
||||
*/
|
||||
export function init() {
|
||||
|
||||
/* Place parameters in static storage for common use
|
||||
-------------------------------------------------*/
|
||||
this.sin_p14 = Math.sin(this.lat0);
|
||||
this.cos_p14 = Math.cos(this.lat0);
|
||||
// Approximation for projecting points to the horizon (infinity)
|
||||
this.infinity_dist = 1000 * this.a;
|
||||
this.rc = 1;
|
||||
}
|
||||
|
||||
/* Gnomonic forward equations--mapping lat,long to x,y
|
||||
---------------------------------------------------*/
|
||||
export function forward(p) {
|
||||
var sinphi, cosphi; /* sin and cos value */
|
||||
var dlon; /* delta longitude value */
|
||||
var coslon; /* cos of longitude */
|
||||
var ksp; /* scale factor */
|
||||
var g;
|
||||
var x, y;
|
||||
var lon = p.x;
|
||||
var lat = p.y;
|
||||
/* Forward equations
|
||||
-----------------*/
|
||||
dlon = adjust_lon(lon - this.long0);
|
||||
|
||||
sinphi = Math.sin(lat);
|
||||
cosphi = Math.cos(lat);
|
||||
|
||||
coslon = Math.cos(dlon);
|
||||
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
|
||||
ksp = 1;
|
||||
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
|
||||
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
|
||||
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
|
||||
}
|
||||
else {
|
||||
|
||||
// Point is in the opposing hemisphere and is unprojectable
|
||||
// We still need to return a reasonable point, so we project
|
||||
// to infinity, on a bearing
|
||||
// equivalent to the northern hemisphere equivalent
|
||||
// This is a reasonable approximation for short shapes and lines that
|
||||
// straddle the horizon.
|
||||
|
||||
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
|
||||
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
|
||||
|
||||
}
|
||||
p.x = x;
|
||||
p.y = y;
|
||||
return p;
|
||||
}
|
||||
|
||||
export function inverse(p) {
|
||||
var rh; /* Rho */
|
||||
var sinc, cosc;
|
||||
var c;
|
||||
var lon, lat;
|
||||
|
||||
/* Inverse equations
|
||||
-----------------*/
|
||||
p.x = (p.x - this.x0) / this.a;
|
||||
p.y = (p.y - this.y0) / this.a;
|
||||
|
||||
p.x /= this.k0;
|
||||
p.y /= this.k0;
|
||||
|
||||
if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
|
||||
c = Math.atan2(rh, this.rc);
|
||||
sinc = Math.sin(c);
|
||||
cosc = Math.cos(c);
|
||||
|
||||
lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
|
||||
lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
|
||||
lon = adjust_lon(this.long0 + lon);
|
||||
}
|
||||
else {
|
||||
lat = this.phic0;
|
||||
lon = 0;
|
||||
}
|
||||
|
||||
p.x = lon;
|
||||
p.y = lat;
|
||||
return p;
|
||||
}
|
||||
|
||||
export var names = ["gnom"];
|
||||
export default {
|
||||
init: init,
|
||||
forward: forward,
|
||||
inverse: inverse,
|
||||
names: names
|
||||
};
|
Loading…
Add table
editor.link_modal.header
Reference in a new issue