First commit
This commit is contained in:
commit
87d22a4516
235 changed files with 51802 additions and 0 deletions
241
node_modules/proj4/lib/projections/omerc.js
generated
vendored
Normal file
241
node_modules/proj4/lib/projections/omerc.js
generated
vendored
Normal file
|
@ -0,0 +1,241 @@
|
|||
import tsfnz from '../common/tsfnz';
|
||||
import adjust_lon from '../common/adjust_lon';
|
||||
import phi2z from '../common/phi2z';
|
||||
import { D2R, EPSLN, HALF_PI, TWO_PI, FORTPI } from '../constants/values';
|
||||
|
||||
var TOL = 1e-7;
|
||||
|
||||
function isTypeA(P) {
|
||||
var typeAProjections = ['Hotine_Oblique_Mercator','Hotine_Oblique_Mercator_Azimuth_Natural_Origin'];
|
||||
var projectionName = typeof P.PROJECTION === "object" ? Object.keys(P.PROJECTION)[0] : P.PROJECTION;
|
||||
|
||||
return 'no_uoff' in P || 'no_off' in P || typeAProjections.indexOf(projectionName) !== -1;
|
||||
}
|
||||
|
||||
|
||||
/* Initialize the Oblique Mercator projection
|
||||
------------------------------------------*/
|
||||
export function init() {
|
||||
var con, com, cosph0, D, F, H, L, sinph0, p, J, gamma = 0,
|
||||
gamma0, lamc = 0, lam1 = 0, lam2 = 0, phi1 = 0, phi2 = 0, alpha_c = 0, AB;
|
||||
|
||||
// only Type A uses the no_off or no_uoff property
|
||||
// https://github.com/OSGeo/proj.4/issues/104
|
||||
this.no_off = isTypeA(this);
|
||||
this.no_rot = 'no_rot' in this;
|
||||
|
||||
var alp = false;
|
||||
if ("alpha" in this) {
|
||||
alp = true;
|
||||
}
|
||||
|
||||
var gam = false;
|
||||
if ("rectified_grid_angle" in this) {
|
||||
gam = true;
|
||||
}
|
||||
|
||||
if (alp) {
|
||||
alpha_c = this.alpha;
|
||||
}
|
||||
|
||||
if (gam) {
|
||||
gamma = (this.rectified_grid_angle * D2R);
|
||||
}
|
||||
|
||||
if (alp || gam) {
|
||||
lamc = this.longc;
|
||||
} else {
|
||||
lam1 = this.long1;
|
||||
phi1 = this.lat1;
|
||||
lam2 = this.long2;
|
||||
phi2 = this.lat2;
|
||||
|
||||
if (Math.abs(phi1 - phi2) <= TOL || (con = Math.abs(phi1)) <= TOL ||
|
||||
Math.abs(con - HALF_PI) <= TOL || Math.abs(Math.abs(this.lat0) - HALF_PI) <= TOL ||
|
||||
Math.abs(Math.abs(phi2) - HALF_PI) <= TOL) {
|
||||
throw new Error();
|
||||
}
|
||||
}
|
||||
|
||||
var one_es = 1.0 - this.es;
|
||||
com = Math.sqrt(one_es);
|
||||
|
||||
if (Math.abs(this.lat0) > EPSLN) {
|
||||
sinph0 = Math.sin(this.lat0);
|
||||
cosph0 = Math.cos(this.lat0);
|
||||
con = 1 - this.es * sinph0 * sinph0;
|
||||
this.B = cosph0 * cosph0;
|
||||
this.B = Math.sqrt(1 + this.es * this.B * this.B / one_es);
|
||||
this.A = this.B * this.k0 * com / con;
|
||||
D = this.B * com / (cosph0 * Math.sqrt(con));
|
||||
F = D * D -1;
|
||||
|
||||
if (F <= 0) {
|
||||
F = 0;
|
||||
} else {
|
||||
F = Math.sqrt(F);
|
||||
if (this.lat0 < 0) {
|
||||
F = -F;
|
||||
}
|
||||
}
|
||||
|
||||
this.E = F += D;
|
||||
this.E *= Math.pow(tsfnz(this.e, this.lat0, sinph0), this.B);
|
||||
} else {
|
||||
this.B = 1 / com;
|
||||
this.A = this.k0;
|
||||
this.E = D = F = 1;
|
||||
}
|
||||
|
||||
if (alp || gam) {
|
||||
if (alp) {
|
||||
gamma0 = Math.asin(Math.sin(alpha_c) / D);
|
||||
if (!gam) {
|
||||
gamma = alpha_c;
|
||||
}
|
||||
} else {
|
||||
gamma0 = gamma;
|
||||
alpha_c = Math.asin(D * Math.sin(gamma0));
|
||||
}
|
||||
this.lam0 = lamc - Math.asin(0.5 * (F - 1 / F) * Math.tan(gamma0)) / this.B;
|
||||
} else {
|
||||
H = Math.pow(tsfnz(this.e, phi1, Math.sin(phi1)), this.B);
|
||||
L = Math.pow(tsfnz(this.e, phi2, Math.sin(phi2)), this.B);
|
||||
F = this.E / H;
|
||||
p = (L - H) / (L + H);
|
||||
J = this.E * this.E;
|
||||
J = (J - L * H) / (J + L * H);
|
||||
con = lam1 - lam2;
|
||||
|
||||
if (con < -Math.pi) {
|
||||
lam2 -=TWO_PI;
|
||||
} else if (con > Math.pi) {
|
||||
lam2 += TWO_PI;
|
||||
}
|
||||
|
||||
this.lam0 = adjust_lon(0.5 * (lam1 + lam2) - Math.atan(J * Math.tan(0.5 * this.B * (lam1 - lam2)) / p) / this.B);
|
||||
gamma0 = Math.atan(2 * Math.sin(this.B * adjust_lon(lam1 - this.lam0)) / (F - 1 / F));
|
||||
gamma = alpha_c = Math.asin(D * Math.sin(gamma0));
|
||||
}
|
||||
|
||||
this.singam = Math.sin(gamma0);
|
||||
this.cosgam = Math.cos(gamma0);
|
||||
this.sinrot = Math.sin(gamma);
|
||||
this.cosrot = Math.cos(gamma);
|
||||
|
||||
this.rB = 1 / this.B;
|
||||
this.ArB = this.A * this.rB;
|
||||
this.BrA = 1 / this.ArB;
|
||||
AB = this.A * this.B;
|
||||
|
||||
if (this.no_off) {
|
||||
this.u_0 = 0;
|
||||
} else {
|
||||
this.u_0 = Math.abs(this.ArB * Math.atan(Math.sqrt(D * D - 1) / Math.cos(alpha_c)));
|
||||
|
||||
if (this.lat0 < 0) {
|
||||
this.u_0 = - this.u_0;
|
||||
}
|
||||
}
|
||||
|
||||
F = 0.5 * gamma0;
|
||||
this.v_pole_n = this.ArB * Math.log(Math.tan(FORTPI - F));
|
||||
this.v_pole_s = this.ArB * Math.log(Math.tan(FORTPI + F));
|
||||
}
|
||||
|
||||
|
||||
/* Oblique Mercator forward equations--mapping lat,long to x,y
|
||||
----------------------------------------------------------*/
|
||||
export function forward(p) {
|
||||
var coords = {};
|
||||
var S, T, U, V, W, temp, u, v;
|
||||
p.x = p.x - this.lam0;
|
||||
|
||||
if (Math.abs(Math.abs(p.y) - HALF_PI) > EPSLN) {
|
||||
W = this.E / Math.pow(tsfnz(this.e, p.y, Math.sin(p.y)), this.B);
|
||||
|
||||
temp = 1 / W;
|
||||
S = 0.5 * (W - temp);
|
||||
T = 0.5 * (W + temp);
|
||||
V = Math.sin(this.B * p.x);
|
||||
U = (S * this.singam - V * this.cosgam) / T;
|
||||
|
||||
if (Math.abs(Math.abs(U) - 1.0) < EPSLN) {
|
||||
throw new Error();
|
||||
}
|
||||
|
||||
v = 0.5 * this.ArB * Math.log((1 - U)/(1 + U));
|
||||
temp = Math.cos(this.B * p.x);
|
||||
|
||||
if (Math.abs(temp) < TOL) {
|
||||
u = this.A * p.x;
|
||||
} else {
|
||||
u = this.ArB * Math.atan2((S * this.cosgam + V * this.singam), temp);
|
||||
}
|
||||
} else {
|
||||
v = p.y > 0 ? this.v_pole_n : this.v_pole_s;
|
||||
u = this.ArB * p.y;
|
||||
}
|
||||
|
||||
if (this.no_rot) {
|
||||
coords.x = u;
|
||||
coords.y = v;
|
||||
} else {
|
||||
u -= this.u_0;
|
||||
coords.x = v * this.cosrot + u * this.sinrot;
|
||||
coords.y = u * this.cosrot - v * this.sinrot;
|
||||
}
|
||||
|
||||
coords.x = (this.a * coords.x + this.x0);
|
||||
coords.y = (this.a * coords.y + this.y0);
|
||||
|
||||
return coords;
|
||||
}
|
||||
|
||||
export function inverse(p) {
|
||||
var u, v, Qp, Sp, Tp, Vp, Up;
|
||||
var coords = {};
|
||||
|
||||
p.x = (p.x - this.x0) * (1.0 / this.a);
|
||||
p.y = (p.y - this.y0) * (1.0 / this.a);
|
||||
|
||||
if (this.no_rot) {
|
||||
v = p.y;
|
||||
u = p.x;
|
||||
} else {
|
||||
v = p.x * this.cosrot - p.y * this.sinrot;
|
||||
u = p.y * this.cosrot + p.x * this.sinrot + this.u_0;
|
||||
}
|
||||
|
||||
Qp = Math.exp(-this.BrA * v);
|
||||
Sp = 0.5 * (Qp - 1 / Qp);
|
||||
Tp = 0.5 * (Qp + 1 / Qp);
|
||||
Vp = Math.sin(this.BrA * u);
|
||||
Up = (Vp * this.cosgam + Sp * this.singam) / Tp;
|
||||
|
||||
if (Math.abs(Math.abs(Up) - 1) < EPSLN) {
|
||||
coords.x = 0;
|
||||
coords.y = Up < 0 ? -HALF_PI : HALF_PI;
|
||||
} else {
|
||||
coords.y = this.E / Math.sqrt((1 + Up) / (1 - Up));
|
||||
coords.y = phi2z(this.e, Math.pow(coords.y, 1 / this.B));
|
||||
|
||||
if (coords.y === Infinity) {
|
||||
throw new Error();
|
||||
}
|
||||
|
||||
coords.x = -this.rB * Math.atan2((Sp * this.cosgam - Vp * this.singam), Math.cos(this.BrA * u));
|
||||
}
|
||||
|
||||
coords.x += this.lam0;
|
||||
|
||||
return coords;
|
||||
}
|
||||
|
||||
export var names = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Two_Point_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "Oblique_Mercator", "omerc"];
|
||||
export default {
|
||||
init: init,
|
||||
forward: forward,
|
||||
inverse: inverse,
|
||||
names: names
|
||||
};
|
Loading…
Add table
editor.link_modal.header
Reference in a new issue