3d-viewer/app/three/ShaderMaterial.ts

98 lines
3.7 KiB
TypeScript

import { ShaderMaterial, Texture, Vector4 } from "three";
export interface TileData {
xmin: number;
ymin: number;
xmax: number;
ymax: number;
texture: Texture | null;
}
const maxTiles = 16;
// Initialize empty texture slots
const dummyTexture = new Texture();
dummyTexture.image = document.createElement("canvas");
dummyTexture.needsUpdate = true;
// Create shader material
export const shaderMaterial = new ShaderMaterial({
uniforms: {
tileTextures: { value: Array(maxTiles).fill(dummyTexture) },
tileBounds: { value: Array(maxTiles).fill(new Vector4(0, 0, 0, 0)) },
tileCount: { value: 0 },
},
vertexShader: `
varying vec3 vWorldPosition;
void main() {
vWorldPosition = (modelMatrix * vec4(position, 1.0)).xyz;
gl_Position = projectionMatrix * viewMatrix * vec4(vWorldPosition, 1.0);
}
`,
fragmentShader: `
uniform sampler2D tileTextures[${maxTiles}];
uniform vec4 tileBounds[${maxTiles}];
uniform int tileCount;
varying vec3 vWorldPosition;
void main() {
vec4 color = vec4(1.0, 1.0, 1.0, 1.0); // Default color
for (int i = 0; i < ${maxTiles}; i++) {
if (i >= tileCount) break; // Only process available tiles
vec4 bounds = tileBounds[i];
if (vWorldPosition.x >= bounds.x && vWorldPosition.x <= bounds.y &&
vWorldPosition.y >= bounds.z && vWorldPosition.y <= bounds.w) {
vec2 uv = (vWorldPosition.xy - bounds.xz) / (bounds.yw - bounds.xz);
switch (i) {
case 0: color = texture2D(tileTextures[0], uv); break;
case 1: color = texture2D(tileTextures[1], uv); break;
case 2: color = texture2D(tileTextures[2], uv); break;
case 3: color = texture2D(tileTextures[3], uv); break;
case 4: color = texture2D(tileTextures[4], uv); break;
case 5: color = texture2D(tileTextures[5], uv); break;
case 6: color = texture2D(tileTextures[6], uv); break;
case 7: color = texture2D(tileTextures[7], uv); break;
case 8: color = texture2D(tileTextures[8], uv); break;
case 9: color = texture2D(tileTextures[9], uv); break;
case 10: color = texture2D(tileTextures[10], uv); break;
case 11: color = texture2D(tileTextures[11], uv); break;
case 12: color = texture2D(tileTextures[12], uv); break;
case 13: color = texture2D(tileTextures[13], uv); break;
case 14: color = texture2D(tileTextures[14], uv); break;
case 15: color = texture2D(tileTextures[15], uv); break;
}
break; // Stop checking once we find the correct tile
}
}
gl_FragColor = color;
}
`,
});
export function updateTiles(newTiles: TileData[]) {
if (newTiles.length > maxTiles) {
newTiles = newTiles.slice(0, maxTiles);
}
const textures = newTiles.map((t) => t.texture);
const bounds = newTiles.map(
(t) => new Vector4(t.xmin, t.xmax, t.ymin, t.ymax)
);
// Fill remaining slots with dummy data to maintain uniform array size
while (textures.length < maxTiles) {
textures.push(dummyTexture);
bounds.push(new Vector4(0, 0, 0, 0));
}
// Update shader uniforms
shaderMaterial.uniforms.tileTextures.value = textures;
shaderMaterial.uniforms.tileBounds.value = bounds;
shaderMaterial.uniforms.tileCount.value = newTiles.length;
}