Fix linter errors

This commit is contained in:
Fuhrmann 2025-03-07 10:20:23 +01:00
parent 635d9b6292
commit 69666137ed
6 changed files with 9 additions and 204 deletions

View file

@ -31,7 +31,7 @@ export function Map() {
return () => {
ignore = true;
};
}, [divRef]);
}, [divRef, setSceneView]);
return (
<div className="w-full h-full flex flex-col justify-center">

View file

@ -1,4 +1,4 @@
import { AxesHelper, Group, Mesh, MeshStandardMaterial, Scene } from "three";
import { Group, Mesh, MeshStandardMaterial, Scene } from "three";
import { buildMeshes } from "./utils/build-meshes";
import { Extent, buildScene } from "./utils/build-scene";
import { getMetadata } from "./utils/utils";
@ -102,7 +102,7 @@ async function init(container: HTMLElement, modelId = MODEL_ID) {
);
// Add clipping planes to the meshes
for (let mesh of meshes) {
for (const mesh of meshes) {
mesh.material.clippingPlanes = planes;
}

View file

@ -1,195 +0,0 @@
import * as THREE from "three";
import {
positionGeometry,
cameraProjectionMatrix,
modelViewProjection,
modelScale,
positionView,
modelViewMatrix,
storage,
attribute,
float,
timerLocal,
uniform,
tslFn,
vec3,
vec4,
rotate,
PI2,
sin,
cos,
instanceIndex,
negate,
texture,
uv,
vec2,
positionLocal,
int,
Fn,
} from "three/tsl";
import { OrbitControls } from "three/addons/controls/OrbitControls.js";
import GUI from "three/addons/libs/lil-gui.module.min.js";
let camera: THREE.PerspectiveCamera;
let scene: THREE.Scene;
let mesh: THREE.Mesh;
//@ts-ignore
let renderer: THREE.WebGPURenderer;
init();
function init() {
camera = new THREE.PerspectiveCamera(
70,
window.innerWidth / window.innerHeight,
0.1,
100
);
camera.position.z = 15;
scene = new THREE.Scene();
const instanceCount = 80;
const numCircles = 4;
const meshesPerCircle = instanceCount / numCircles;
const geometry = new THREE.BoxGeometry(0.1, 0.1, 0.1);
const texture = new THREE.TextureLoader().load("textures/crate.gif");
texture.colorSpace = THREE.SRGBColorSpace;
// @ts-ignore
const material = new THREE.MeshStandardNodeMaterial({ map: texture });
const effectController = {
uCircleRadius: uniform(1.0),
uCircleSpeed: uniform(0.5),
uSeparationStart: uniform(1.0),
uSeparationEnd: uniform(2.0),
uCircleBounce: uniform(0.02),
};
const positionTSL = Fn(() => {
// Destructure uniforms
const {
uCircleRadius,
uCircleSpeed,
uSeparationStart,
uSeparationEnd,
uCircleBounce,
} = effectController;
// Access the time elapsed since shader creation.
const time = timerLocal();
const circleSpeed = time.mul(uCircleSpeed);
// Index of a cube within its respective circle.
const instanceWithinCircle = instanceIndex.modInt(meshesPerCircle);
// Index of the circle that the cube mesh belongs to.
const circleIndex = instanceIndex.div(meshesPerCircle).add(1);
// Circle Index Even = 1, Circle Index Odd = -1.
const evenOdd = circleIndex.modInt(2).mul(2).oneMinus();
// Increase radius when we enter the next circle.
const circleRadius = uCircleRadius.mul(circleIndex);
// Normalize instanceWithinCircle to range [0, 2*PI].
const angle = float(instanceWithinCircle)
.div(meshesPerCircle)
.mul(PI2)
.add(circleSpeed);
// Rotate even and odd circles in opposite directions.
const circleX = sin(angle).mul(circleRadius).mul(evenOdd);
const circleY = cos(angle).mul(circleRadius);
// Scale cubes in later concentric circles to be larger.
const scalePosition = positionLocal.mul(circleIndex);
// Rotate the individual cubes that form the concentric circles.
const rotatePosition = rotate(scalePosition, vec3(time, time, time));
// Control how much the circles bounce vertically.
const bounceOffset = cos(time.mul(10)).mul(uCircleBounce);
// Bounce odd and even circles in opposite directions.
const bounce = circleIndex
.modInt(2)
.equal(0)
.cond(bounceOffset, negate(bounceOffset));
// Distance between minimumn and maximumn z-distance between circles.
const separationDistance = uSeparationEnd.sub(uSeparationStart);
// Move sin into range of 0 to 1.
const sinRange = sin(time).add(1).mul(0.5);
// Make circle separation oscillate in a range of separationStart to separationEnd
const separation = uSeparationStart.add(sinRange.mul(separationDistance));
// Y pos offset by bounce. Z-distance from the origin increases with each circle.
const newPosition = rotatePosition.add(
vec3(circleX, circleY.add(bounce), float(circleIndex).mul(separation))
);
return newPosition;
});
material.positionNode = positionTSL();
//material.colorNode = texture( crateTexture, uv().add( vec2( timerLocal(), negate( timerLocal()) ) ));
const r = sin(timerLocal().add(instanceIndex));
const g = cos(timerLocal().add(instanceIndex));
const b = sin(timerLocal());
material.fragmentNode = vec4(r, g, b, 1.0);
mesh = new THREE.InstancedMesh(geometry, material, instanceCount);
scene.add(mesh);
const directionalLight = new THREE.DirectionalLight(0xffffff, 1);
directionalLight.position.set(5, 3, -7.5);
scene.add(directionalLight);
// @ts-ignore
renderer = new THREE.WebGPURenderer({ antialias: false });
renderer.setPixelRatio(window.devicePixelRatio);
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setAnimationLoop(animate);
document.body.appendChild(renderer.domElement);
const controls = new OrbitControls(camera, renderer.domElement);
controls.minDistance = 1;
controls.maxDistance = 30;
const gui = new GUI();
gui
.add(effectController.uCircleRadius, "value", 0.1, 3.0, 0.1)
.name("Circle Radius");
gui
.add(effectController.uCircleSpeed, "value", 0.1, 3.0, 0.1)
.name("Circle Speed");
gui
.add(effectController.uSeparationStart, "value", 0.5, 4, 0.1)
.name("Separation Start");
gui
.add(effectController.uSeparationEnd, "value", 1.0, 5.0, 0.1)
.name("Separation End");
gui
.add(effectController.uCircleBounce, "value", 0.01, 0.2, 0.001)
.name("Circle Bounce");
window.addEventListener("resize", onWindowResize);
}
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
}
function animate() {
renderer.render(scene, camera);
}

View file

@ -74,7 +74,7 @@ export function buildClippingplanes(
const edgeMeshMap = {} as Partial<EdgeMashMap>;
// Create plane meshes
for (let p of planesData) {
for (const p of planesData) {
let name;
let planeCenter;
let width;
@ -461,7 +461,7 @@ function generateCapMeshes(
const capMeshes: Mesh[] = [];
// Iterate over the list of geologic meshes
for (let mesh of meshes) {
for (const mesh of meshes) {
// Slice visible meshes only
if (mesh.visible) {
const position = mesh.geometry.attributes.position.array;
@ -611,7 +611,7 @@ function triangulatePolygon(vertices: Vector3[], plane: Plane) {
// Construct the local 2D coordinate system
const N = plane.normal.clone().normalize(); // Plane normal
let T = new Vector3(1, 0, 0); // Temporary vector for tangent
const T = new Vector3(1, 0, 0); // Temporary vector for tangent
// Ensure T is not parallel to N
if (Math.abs(N.dot(T)) > 0.9) {

View file

@ -50,7 +50,7 @@ export function buildCoordinateGrid(extent: Extent) {
}
const annotations = [];
for (let point of startingPointsHorizontal) {
for (const point of startingPointsHorizontal) {
const label = createLabel(
`${point.x.toFixed(2)}`,
point,
@ -59,7 +59,7 @@ export function buildCoordinateGrid(extent: Extent) {
annotations.push(label);
}
for (let point of startingPointsVertical) {
for (const point of startingPointsVertical) {
const label = createLabel(
`${point.y.toFixed(2)}`,
point,

View file

@ -32,7 +32,7 @@ export function unpackVertices(arrayBuffer: ArrayBuffer) {
ptr += FOURBYTE;
significantBits = readSignificantBits(dataView, ptr, bytesCount);
let value = 0.0;
for (var j = dim, i = 0; i < pointsCount; j += DIMENSIONS, i++) {
for (let j = dim, i = 0; i < pointsCount; j += DIMENSIONS, i++) {
value = significantBits.readBits(significantBitsCount, 0) | commonBits;
if (dim === 2) {
value = value / 100; // z values in pc_patch from DB are multiplied by 100